
title permalink date sidebar

UF2.
Laravel

/DAW-M07-UF2-
Apunts/

Mon Jan 16 2017 04:02:20 GMT+0100 (Hora
estándar romance)

nav

docs

{% include toc icon="columns" title="Menú" %}

Què és Laravel

Laravel és un framework PHP orientat a objectes creat al 2005.

Utilitza el model MVC (Model Vista Controlador).

S'aprèn ràpidament.

Requereix coneixements de PHP i programació orientacio objectes (POO).

Patró MVC

MVC són les sigles de model-vista-controlador (model-view-controler) que consisteix en un

patró d'arquitectura del software.

L'aquitectura de software, a semblança dels plànols d'un edifici o construcció, defineix la forma

com s'oganitzen, interactuen i es relacionen entre sí les parts del programari.

MVC permet no barrejar llenguatges de programació en el mateix codi.

MVC devideix les aplicacions en 3 nivells :

Modelo: representa la lógica de negocios.

Es el encargado de accesar de forma directa a los datos actuando como

“intermediario” con la base de datos.

Vista: es la encargada de mostrar la información al usuario de forma gráfica.

Controlador: es el intermediario entre la vista y el modelo. Es quien controla las

interacciones del usuario solicitando los datos al modelo y entregándolos a la vista para que

ésta, lo presente al usuario.

MVC: Funcionament

1. L'usuari des del navegador accedeix una pàgina web.

2. Accedim a una ruta (ex: /, /usuaris, /registre).

3. Aquesta ruta té un controlador associat al que se'ns envia.

4. Si el controlador vol accedir a la base de dades, demana al model (Ex: Model Usuari) les dades.

5. El model s'encarrega d'interactuar amb la base de dades i retornar la informació al controlador

per ser manipulada.

6. El controlador rep la informació i l'envia a la vista (una página html).

7. El controlador configura la vista i la retorna al navegador en formato HTML.

Requiriments Laravel

PHP >= 5.6.4

OpenSSL PHP Extension

PDO PHP Extension

Mbstring PHP Extension

Tokenizer PHP Extension

XML PHP Extension

Tots aquest requiriments són satisfets per la màquina virtual Laravel Homestead.

Homestead

L'equip de Laravel ens ofereix una màquina virtual anomenda Homestead, per facilitar-tos la

https://laravel.com/docs/5.3/homestead

preparació de l'entorn de desenvolupament en Laravel.

Homestead és una "Box de Vagrant".

Vagrant és una capa per sobre de Virtualbox o VMWare que ens permet crear entorns de

desenvolupament i les Boxs són imatges de sistemes operatius ja instal·lats.

Included Software:

Ubuntu 16.04

Git

PHP 7.1

Nginx

MySQL

MariaDB

Sqlite3

Postgres

Composer

Node (With Yarn, PM2, Bower, Grunt, and Gulp)

Redis

Memcached

Beanstalkd

Documentació Laravel Homestead

Instal·lació i configuració

Utilitzarem Composer per descarregar-nos i instal·lar el Framework Larevel.

i. Instal·la el gestor de paquets Composer a la teva màquina.

ii. Instal·la Laravel seguint les indicacions de la documentació.

Primer es descarrega l'instal·lador de Laravel via Composer:

 composer global require "laravel/installer"

Laravel s'instal·la a $HOME/.composer però per poder executar les properes comandes

necessitarem tenir $HOME/.composer/vendor/bin al nostre $PATH. Inserta això al teu

$HOME/.profile:

 PATH=$PATH:~/.composer/vendor/bin

iii. Crea una app Laravel a la carpeta on guardaràs els teus projectes:

https://laravel.com/docs/5.3/homestead
https://getcomposer.org/
https://getcomposer.org/
https://laravel.com/docs/5.3

 $ laravel new laravelapp1

Ens crea un nou directori amb la instal·lació de Laravel i totes les seves dependències.

o també:

 $ composer create-project --prefer-dist laravel/laravel laravelapp1

iv. Arrenca l'aplicació de prova (inicia un petit servidor de desenvolupament):

 $ php artisan serve

v. Comprova la app amb el navegador a:

 http://localhost:8000

Artisan

Artisan ens permet executar ordres des del terminal que ajuden a crear o modificar elements del

nostre projecte en Laravel, com crear models, controladors, veure totes les rutes, etc ...

Per poder executar les ordres de Artisan, des del terminal anem fins a la carpeta del projecte i

un cop allà executem:

 php artisan list

Aquesta comanda ens llita tot el que podem fer amb artisan.

Rutes

Les rutes en Laravel són les responsables d'indic....................

Si nosaltres demanem la ruta /tuits volem que ens llisti tots els tuits.

Si volem el tuit 1, tindrem una ruta com per exemple /tuit/1.

Tant les peticions GET com POST les podem gestionar amb les rutes i controladors.

Vegem l'arxiu de rutes situat a routes/web.php:

<?php

/*

|--

| Web Routes

|--

| Here is where you can register web routes for your application. These

| routes are loaded by the RouteServiceProvider within a group which

| contains the "web" middleware group. Now create something great!

|

*/

Route::get('/', function () {

 return view('welcome');

});

Veiem que només hi ha una ruta definida, que és l'arrel '/', la qual ens retorna una vista

anomenada welcome.

Totes les vistes són al directori resources/views.

Si anem al directori views veiem que hi ha un arxiu anomenat welcome.blade.php.

Quan cridem a la vista amb el mètode view('welcome') no cal posar-li l'extensió.

Aquesta vista conté el Blade de la pàgina que veiem quan anem a l'arrel del projecte.

Per veure les rutes que tenim definides podem utilizar la comanda Artisan:

 php artisan route:list

I mostrarà algu com:

Documentació: Routes

Rutes amb paràmetres

<?php

 Route::get('inici/{nom}', function($nom){

https://laravel.com/docs/5.3/routing

 return "Benvingut $nom";

 });

?>

També es poden enviar varis paràmetres:

<?php

 Route::get('agenda/{mes}/{any}', function($mes, $any){

 return "Mostrant l'agenda de $mes de $any";

 });

?>

Rutes amb paràmetres opcionals

Podem definir rutes amb paràmetres opcionals com:

example.com/categoria/php

example.com/categoria/php/2

A vegades s'especifica la pàgina de la categoria i altres no simulant el funcionament d'un paginador.

En Laravel, el paràmetres opcionals s'indiquen amb un interrogant ?.

<?php

 Route::get('categoria/{categoria}/{pagina?}', function($categoria, $pagina = 1){

 return "Mostrant categoria $categoria i pàgina $pagina";

 });

?>

Estructura de carpetes

Alguns dels arxius que tenim directament a la carperta arrel de Laravel són:

.env: És la definició de variables d'entorn.

composer.json: Conté la informació pel gestor de paquets Composer.

Carpetes principals de Laravel:

App: Arxius d'aplicació (Controladors, middlewares, etc)

Bootstrap: Arxius del motor de Laravel. (No tocarem)

Config: Arxius de configuració (Bases de dades, mail, etc)

Database: Arxius de Migracions i Seeds.

Public: Arxius estàtics, són els arxius Públics de la nostra aplicació, els podran veure tots els

usuaris que accedeixin a la nostra aplicació (Arxius CSS, Imatges, etc).

Resources: Recursos de l'aplicació, com ara les Vistes.

Routes: Arxius de definició de rutes.

Storage: Arxius tals com memòria caché, sessions, logs, etc ... (No tocarem)

Tests: Arxius per realitzar tests de la nostra aplicació perquè funcioni correctament. (No

tocarem)

Vendor: Les llibreries externes que gestiona Composer que són dependències de Laravel. (No

s'ha de tocar)

Vistes

Les vistes s'encarreguen de mostrar la inforació a l'usuari.

Les vistes consisteixen en uns arxius php que generen el codi HTML que s'envia al navegador.

En Laravel, les vistes es guarden a la carpeta resources/views/.

I aquí es poden organitzar en carpetes per cada secció de l'aplicació.

Laravel utilitza un sistema de plantilles anomenat Blade.

Per això els arxius tenen l'extensió .blade.php.

És molt important l'extensió, si no no funcionarà.

Podem invocar una vista des del sistema de routing fent:

 <?php

 Route::get('inici', function () {

 return view('inici'); //cridem la funció view passant el nom de la vista

 });

 ?>

Passar dades una vista

Podem passar dades a una vista a través d'un array associatiu.

 <?php

 Route::get('/calendari', function () {

 view('calendari', [

 'mes' => $mes,

 'any' => $any,

 'events' => $events

]);

});

?>

L'arxiu resources/views/calendari.blade.php seria:

<html>

 <body>

 <p>

 Estàs visualitzant el mes {{$mes}} i l'any {{$any}}.

 </p>

 </body>

</html>

Per mostrar dades en un arxiu blade, s'utilitzen les dobles claus {{ $data }}

Controladors

En Laravel, els controladors es guarden a la carpeta app/Http/Controllers .

I aquí es poden organitzar en subcarpetes.

Codi d'un controlador bàsic:

<?php

 namespace App\Http\Controllers;

 use App\Http\Controllers\Controller;

 class ArticulosController extends Controller

 //El controlador extén la classe base Controller de Laravel

 {

 public function ver($id)

 {

 return view('articulos.ver', ['id' => $id]);

 }

 }

?>

Cridar un controlador des del sistema de routing

Els controladors els cridarem, normalment, des del sistema de routing.

Indicarem el nom del controlador i l'acció (mètode) que s'ha d'executar.

<?php

 Route::get('articulos/{id}','ArticulosController@ver');

?>

En aquest exemple, la ruta té un paràmetre que serà passat al mètode ver() del

ArticulosController.

Generar controladors automàticament amb artisan

Crear controladors és una tasca repetitiva en Laravel, per això existiex una comanda artisan per

crear-los automàticament.

 php artisan make:controller CategoriasController

Models

http://desarrolloweb.com/articulos/introduccion-modelos-laravel.html

http://desarrolloweb.com/articulos/introduccion-modelos-laravel.html

